首页> 外文OA文献 >Heterointerface effects in the electro-intercalation of van der Waals heterostructures
【2h】

Heterointerface effects in the electro-intercalation of van der Waals heterostructures

机译:在van der Waals的电插入中的异质界面效应   异质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Molecular-scale manipulation of electronic/ionic charge accumulation inmaterials is a preeminent challenge, particularly in electrochemical energystorage. Layered van der Waals (vdW) crystals exemplify a diverse family ofmaterials that permit ions to reversibly associate with a host atomic latticeby intercalation into interlamellar gaps. Motivated principally by the searchfor high-capacity battery anodes, ion intercalation in composites of vdWmaterials is a subject of intense study. Yet the precise role and ability ofheterolayers to modify intercalation reactions remains elusive. Previousstudies of vdW hybrids represented ensemble measurements at macroscopic filmsor powders, which do not permit the isolation and investigation of thechemistry at 2-dimensional (2D) interfaces individually. Here, we demonstratethe electro-intercalation of lithium at the level of individual atomicinterfaces of dissimilar vdW layers. Electrochemical devices based on vdWheterostructures comprised of deterministically stacked hexagonal boronnitride, graphene (G) and molybdenum dichalcogenide (MoCh2; Ch = S, Se) layersare fabricated, enabling the direct resolution of intermediate stages in theintercalation of discrete heterointerfaces and the extent of charge transfer toindividual layers. Operando magnetoresistance and optical spectroscopy coupledwith low-temperature quantum magneto-oscillation measurements show that thecreation of intimate vdW heterointerfaces between G and MoCh2 engenders over10-fold accumulation of charge in MoCh2 compared to MoCh2/MoCh2 homointerfaces,while enforcing a ca. 0.5 V more negative intercalation potential than that ofbulk MoCh2. Beyond energy storage, our new experimental methodology tomanipulate and characterize the electrochemical behavior of layered systemsopens up novel approaches to controlling the charge density in 2D(opto)electronic devices.
机译:材料中电子/离子电荷积累的分子规模控制是一项严峻的挑战,特别是在电化学储能方面。层状范德华(vdW)晶体举例说明了多种材料,这些离子允许离子通过嵌入层间间隙可逆地与主体原子晶格缔合。 vdW材料复合材料中的离子嵌入主要是由于寻求高容量电池阳极而引起的,因此需要进行大量研究。然而,异质层修饰插层反应的确切作用和能力仍然难以捉摸。 vdW杂种的先前研究代表了宏观薄膜或粉末的整体测量,这不允许在二维(2D)界面上单独进行化学分离和研究。在这里,我们证明了锂在不同vdW层的各个原子界面水平上的电嵌入。制备了基于vdWheterostructure的电化学装置,该结构由确定性堆叠的六方氮化硼,石墨烯(G)和二硫化钼钼(MoCh2; Ch = S,Se)层组成,从而可以直接解析中间阶段的离散异质界面的插入以及电荷转移到单个分子的程度层。操作磁致电阻和光谱学结合低温量子磁振荡测量表明,与MoCh2 / MoCh2同质界面相比,G和MoCh2之间紧密的vdW异质界面的产生使MoCh2中的电荷累积超过10倍,而强制执行ca。比块状MoCh2的负插入电位高0.5V。除了储能之外,我们用于操纵和表征分层系统的电化学行为的新实验方法为控制2D(光电)电子设备中的电荷密度开辟了新的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号